Antennas Joomla! - the dynamic portal engine and content management system http://www.awid.com/index.php 2018-01-18T10:03:58Z Joomla! 1.5 - Open Source Content Management ANT-915TC 2015-07-07T00:00:00Z 2015-07-07T00:00:00Z http://www.awid.com/index.php?option=com_content&view=article&id=587:ant-915-tc&catid=941:antennas-&Itemid=82 Administrator wmaster@awid.com <table style="width: 618px; height: 229px;" align="center" border="0" cellpadding="3" cellspacing="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a title="ANT-915TC" target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=587:ant-915-tc&amp;catid=941:antennas-&amp;Itemid=82"><img alt="ANT-915-CP-R" src="http://www.awid.com/images/products/AMNew/ant915tc-24.jpg" style="border: 0px none;" height="169" width="222" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz</span></li> <li><span style="font-size: 10pt;">Near Field Applications<br /></span></li> <li><span style="font-size: 10pt;">Linear Polarized<br style="font-size: 10pt;" /></span></li> <li><span style="font-size: 10pt;">VSWR less than 1.40<br /></span></li> <li><span style="font-size: 10pt;">Size 11" x 26.4" x 0.32” (279mmX670mmX8mm)<br /></span></li> <li><span style="font-size: 10pt;">RF Connector Reverse Polarity TNC</span></li> </ul> </td> </tr> </tbody> </table> <table style="width: 670px; height: 344px;" align="center" border="0" cellpadding="3" cellspacing="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p></p> <p><img src="http://www.awid.com/" alt="" height="197" width="322" /></p> <p><span style="font-size: 10pt; font-family: 'Segoe UI',sans-serif;">AWID has the experience and engineering flexibility to help you optimize RFID reading capabilities that are the right fit for your use case. With AWID, you're not just buying components, you're acquiring competence. </span></p> </td> <td align="left" valign="top"><span style="font-size: x-small;"></span> <p><span style="font-size: 10pt; font-family: 'Segoe UI',sans-serif;">AWID's Ultra Thin ANT-915TC is optimized for frequency band 902-928MHz near field applications for a wide range of RFID uses. With easy, flexible and configurable mounting options the ANT-915TC is perfect for existing shelving systems or embedded smart cabinet systems.</span></p> <p><img src="http://www.awid.com/" alt="" height="201" width="360" /></p> </td> </tr> </tbody> </table> <!-- P--> <p>{jd_file onlinelayout==Simple}{jd_file file==581}</p> <p>&nbsp;</p> <table style="width: 618px; height: 229px;" align="center" border="0" cellpadding="3" cellspacing="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a title="ANT-915TC" target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=587:ant-915-tc&amp;catid=941:antennas-&amp;Itemid=82"><img alt="ANT-915-CP-R" src="http://www.awid.com/images/products/AMNew/ant915tc-24.jpg" style="border: 0px none;" height="169" width="222" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz</span></li> <li><span style="font-size: 10pt;">Near Field Applications<br /></span></li> <li><span style="font-size: 10pt;">Linear Polarized<br style="font-size: 10pt;" /></span></li> <li><span style="font-size: 10pt;">VSWR less than 1.40<br /></span></li> <li><span style="font-size: 10pt;">Size 11" x 26.4" x 0.32” (279mmX670mmX8mm)<br /></span></li> <li><span style="font-size: 10pt;">RF Connector Reverse Polarity TNC</span></li> </ul> </td> </tr> </tbody> </table> <table style="width: 670px; height: 344px;" align="center" border="0" cellpadding="3" cellspacing="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p></p> <p><img src="http://www.awid.com/" alt="" height="197" width="322" /></p> <p><span style="font-size: 10pt; font-family: 'Segoe UI',sans-serif;">AWID has the experience and engineering flexibility to help you optimize RFID reading capabilities that are the right fit for your use case. With AWID, you're not just buying components, you're acquiring competence. </span></p> </td> <td align="left" valign="top"><span style="font-size: x-small;"></span> <p><span style="font-size: 10pt; font-family: 'Segoe UI',sans-serif;">AWID's Ultra Thin ANT-915TC is optimized for frequency band 902-928MHz near field applications for a wide range of RFID uses. With easy, flexible and configurable mounting options the ANT-915TC is perfect for existing shelving systems or embedded smart cabinet systems.</span></p> <p><img src="http://www.awid.com/" alt="" height="201" width="360" /></p> </td> </tr> </tbody> </table> <!-- P--> <p>{jd_file onlinelayout==Simple}{jd_file file==581}</p> <p>&nbsp;</p> ANT-915CP-R 2012-04-17T16:54:17Z 2012-04-17T16:54:17Z http://www.awid.com/index.php?option=com_content&view=article&id=376:ant-915-cp-r&catid=941:antennas-&Itemid=82 Administrator wmaster@awid.com <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=376:ant-915-cp-r&amp;catid=941:antennas-&amp;Itemid=82"><img alt="ANT-915-CP-R" src="http://www.awid.com/images/products/AMNew/ANT_915_CP_R.jpg" style="border: 0px none;" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +5.5dBi<br /></span></li> <li><span style="font-size: 10pt;">Right Hand Circular Polarized (RHCP)</span></li> <li><span style="font-size: 10pt;">Axial Ratio 0.42 dB<br /></span></li> <li><span style="font-size: 10pt;">VSWR less than 1.15</span></li> <li><span style="font-size: 10pt;">Size 9.84”x9.84”x1.29” (250mmX250mmX33mm)<br /></span></li> <li><span style="font-size: 10pt;">RF connector Reverse Polarity TNC</span></li> </ul> </td> </tr> </tbody> </table> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_915_CP-R_Gain_E-theta.jpg" alt="ANT-915-CP-R" style="border: 0px none;" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"><span style="font-size: x-small;"> </span> <p style="margin: 6pt 0in 0.0001pt 0.2in; line-height: 15pt;"><span style="font-size: 10.5pt; font-family: Arial;">AWID's ANT-915CP-R is optimized for frequency band 902-928MHz. </span></p> <p style="margin: 6pt 0in 0.0001pt 0.2in; line-height: 15pt;"><span style="font-size: 10.5pt; font-family: Arial;">Optimization results are high realized gain, low axial ratio of radiation and high return loss over operational frequency band.</span></p> <p style="margin: 6pt 0in 0.0001pt 0.2in; line-height: 15pt;"><span style="font-size: 10.5pt; font-family: Arial;"><img alt="ANT-915-CP-R-3D" src="http://www.awid.com/images/products/AMNew/ANT_915_CP-R_E-theta-3D.jpg" /><br /></span></p> </td> </tr> </tbody> </table> <p>&nbsp;</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within moderate volume.</li> <li>Variation of the Maximum Gain is less than ±0.39dB in Z direction at any Phi angle within operational frequency band.</li> <li> <p>Variation of the Maximum Gain is less than ±0.5dB within the frequency band 889-944MHz at the fixed Phi angle.</p> </li> <li> <p>It provides very low reflection of the transmitter signal into receiver. The return loss is more than 23dB.</p> </li> <li> <p>Moderate light – weight is 980g or 36oz.</p> </li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field within narrow cone, which guaranties the stability of tag interrogation at any position in required direction.</li> <li> <p>Size, weight and gain of the antenna are optimized for stationary and mobile applications.</p> </li> <li> <p>It may be employed for indoor and outdoor installations with IP65 rating.</p> </li> </ul> </td> </tr> </tbody> </table> <!-- P--> <p>&nbsp;{jd_file onlinelayout==Simple}{jd_file file==465}{jd_file file==466}</p> <p>&nbsp;</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=376:ant-915-cp-r&amp;catid=941:antennas-&amp;Itemid=82"><img alt="ANT-915-CP-R" src="http://www.awid.com/images/products/AMNew/ANT_915_CP_R.jpg" style="border: 0px none;" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +5.5dBi<br /></span></li> <li><span style="font-size: 10pt;">Right Hand Circular Polarized (RHCP)</span></li> <li><span style="font-size: 10pt;">Axial Ratio 0.42 dB<br /></span></li> <li><span style="font-size: 10pt;">VSWR less than 1.15</span></li> <li><span style="font-size: 10pt;">Size 9.84”x9.84”x1.29” (250mmX250mmX33mm)<br /></span></li> <li><span style="font-size: 10pt;">RF connector Reverse Polarity TNC</span></li> </ul> </td> </tr> </tbody> </table> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_915_CP-R_Gain_E-theta.jpg" alt="ANT-915-CP-R" style="border: 0px none;" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"><span style="font-size: x-small;"> </span> <p style="margin: 6pt 0in 0.0001pt 0.2in; line-height: 15pt;"><span style="font-size: 10.5pt; font-family: Arial;">AWID's ANT-915CP-R is optimized for frequency band 902-928MHz. </span></p> <p style="margin: 6pt 0in 0.0001pt 0.2in; line-height: 15pt;"><span style="font-size: 10.5pt; font-family: Arial;">Optimization results are high realized gain, low axial ratio of radiation and high return loss over operational frequency band.</span></p> <p style="margin: 6pt 0in 0.0001pt 0.2in; line-height: 15pt;"><span style="font-size: 10.5pt; font-family: Arial;"><img alt="ANT-915-CP-R-3D" src="http://www.awid.com/images/products/AMNew/ANT_915_CP-R_E-theta-3D.jpg" /><br /></span></p> </td> </tr> </tbody> </table> <p>&nbsp;</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within moderate volume.</li> <li>Variation of the Maximum Gain is less than ±0.39dB in Z direction at any Phi angle within operational frequency band.</li> <li> <p>Variation of the Maximum Gain is less than ±0.5dB within the frequency band 889-944MHz at the fixed Phi angle.</p> </li> <li> <p>It provides very low reflection of the transmitter signal into receiver. The return loss is more than 23dB.</p> </li> <li> <p>Moderate light – weight is 980g or 36oz.</p> </li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field within narrow cone, which guaranties the stability of tag interrogation at any position in required direction.</li> <li> <p>Size, weight and gain of the antenna are optimized for stationary and mobile applications.</p> </li> <li> <p>It may be employed for indoor and outdoor installations with IP65 rating.</p> </li> </ul> </td> </tr> </tbody> </table> <!-- P--> <p>&nbsp;{jd_file onlinelayout==Simple}{jd_file file==465}{jd_file file==466}</p> <p>&nbsp;</p> ANT-915CA2x2 2012-04-02T18:52:29Z 2012-04-02T18:52:29Z http://www.awid.com/index.php?option=com_content&view=article&id=369:ant-915-ca2x2&catid=941:antennas-&Itemid=82 Administrator wmaster@awid.com <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=369:ant-915-ca2x2&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/products/AMNew/ANT-915CA-2x2.jpg" alt="ANT_915_CA2x2" style="border: 0;" border="0" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +9.5dBi<br /></span></li> <li><span style="font-size: 10pt;">Right Hand Circular Polarized (RHCP)</span></li> <li><span style="font-size: 10pt;">Axial Ratio less than 0.1 dB<br /></span></li> <li><span style="font-size: 10pt;">VSWR less than 1.15</span></li> <li><span style="font-size: 10pt;">Size 18.7"x18.7"x2.1" (475mmX475mmX52mm)</span></li> <li><span style="font-size: 10pt;">RF connector Reverse Polarity TNC<br /></span></li> </ul> </td> </tr> </tbody> </table> <table style="height: 326px; width: 592px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_915_CA_2x2_Gain_E-theta.jpg" alt="ANT_915_CA_2x2_Gain_E-theta" border="0" width="317" height="316" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"> <p><span style="font-size: x-small;"> </span>AWID's ANT-915CA2x2 is optimized for frequency band 902-928MHz.</p> <p>Optimization results are high realized gain, very low axial ratio of radiation and high return loss over operational frequency band.</p> <p style="padding-left: 30px;"><img src="http://www.awid.com/images/products/AMNew/ANT_915_CA_2x2_E-theta-3D.jpg" alt="ANT_915_CA_2x2_E-theta-3D" border="0" width="227" height="211" /></p> <ul></ul> </td> </tr> </tbody> </table> <table style="height: 259px; width: 589px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within moderate volume.</li> <li>Variation of the Maximum Gain is less than ±0.18dB in Z direction at any Phi angle within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within the frequency band 886-953MHz at the fixed Phi angle.</li> <li>It provides very low reflection of the transmitter signal into receiver. The return loss is more than 23dB.</li> <li>Light – weight is 3480g or 123oz.</li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field within narrow cone, which guaranties the stability of tag interrogation at any position in required direction.</li> <li>High realized gain and low VSWR increase the interrogation range for semi-passive RFID tags at reduced transmitter power.</li> <li>Size, weight and gain of the antenna are optimized for stationary applications.</li> <li>It may be employed for indoor and outdoor installations with IP66 rating.</li> </ul> </td> </tr> </tbody> </table> <!-- P--> <p>{jd_file onlinelayout==Simple} {jd_file file==454} {jd_file file==448}</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=369:ant-915-ca2x2&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/products/AMNew/ANT-915CA-2x2.jpg" alt="ANT_915_CA2x2" style="border: 0;" border="0" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +9.5dBi<br /></span></li> <li><span style="font-size: 10pt;">Right Hand Circular Polarized (RHCP)</span></li> <li><span style="font-size: 10pt;">Axial Ratio less than 0.1 dB<br /></span></li> <li><span style="font-size: 10pt;">VSWR less than 1.15</span></li> <li><span style="font-size: 10pt;">Size 18.7"x18.7"x2.1" (475mmX475mmX52mm)</span></li> <li><span style="font-size: 10pt;">RF connector Reverse Polarity TNC<br /></span></li> </ul> </td> </tr> </tbody> </table> <table style="height: 326px; width: 592px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_915_CA_2x2_Gain_E-theta.jpg" alt="ANT_915_CA_2x2_Gain_E-theta" border="0" width="317" height="316" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"> <p><span style="font-size: x-small;"> </span>AWID's ANT-915CA2x2 is optimized for frequency band 902-928MHz.</p> <p>Optimization results are high realized gain, very low axial ratio of radiation and high return loss over operational frequency band.</p> <p style="padding-left: 30px;"><img src="http://www.awid.com/images/products/AMNew/ANT_915_CA_2x2_E-theta-3D.jpg" alt="ANT_915_CA_2x2_E-theta-3D" border="0" width="227" height="211" /></p> <ul></ul> </td> </tr> </tbody> </table> <table style="height: 259px; width: 589px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within moderate volume.</li> <li>Variation of the Maximum Gain is less than ±0.18dB in Z direction at any Phi angle within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within the frequency band 886-953MHz at the fixed Phi angle.</li> <li>It provides very low reflection of the transmitter signal into receiver. The return loss is more than 23dB.</li> <li>Light – weight is 3480g or 123oz.</li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field within narrow cone, which guaranties the stability of tag interrogation at any position in required direction.</li> <li>High realized gain and low VSWR increase the interrogation range for semi-passive RFID tags at reduced transmitter power.</li> <li>Size, weight and gain of the antenna are optimized for stationary applications.</li> <li>It may be employed for indoor and outdoor installations with IP66 rating.</li> </ul> </td> </tr> </tbody> </table> <!-- P--> <p>{jd_file onlinelayout==Simple} {jd_file file==454} {jd_file file==448}</p> ANT-915LA2x2 2012-04-02T18:52:29Z 2012-04-02T18:52:29Z http://www.awid.com/index.php?option=com_content&view=article&id=373:ant-915-la2x2&catid=941:antennas-&Itemid=82 Administrator wmaster@awid.com <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=373:ant-915-la2x2&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/products/AMNew/ANT-915CA-2x2.jpg" alt="ANT_915_LA2x2" style="border: 0;" border="0" width="224" height="166" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +12.4dBi<br /></span></li> <li><span style="font-size: 10pt;">Horizontal Linear Polarized<br /></span></li> <li><span style="font-size: 10pt;">VSWR less than 1.15</span></li> <li><span style="font-size: 10pt;">Size 18.7"x18.7"x2.1" (475mmX475mmX52mm)</span></li> <li><span style="font-size: 10pt;">RF connector Reverse Polarity TNC<br /></span></li> </ul> </td> </tr> </tbody> </table> <table style="height: 326px; width: 592px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_915_LA_2x2_Gain_E-theta.jpg" alt="ANT_915_LA_2x2_Gain_E-theta" style="border: 0;" border="0" width="317" height="316" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"> <p><span style="font-size: x-small;"> </span>AWID's ANT-915LA2x2 is optimized for frequency band 902-928MHz.</p> <p>Optimization results are high realized gain, very low axial ratio of radiation and high return loss over operational frequency band.</p> <p style="padding-left: 30px;"><img src="http://www.awid.com/images/products/AMNew/ANT_915_LA_2x2_E-theta-3D.jpg" alt="ANT_915_LA_2x2_E-theta-3D" style="border: 0;" border="0" width="227" height="211" /></p> <ul></ul> </td> </tr> </tbody> </table> <table style="height: 259px; width: 589px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within moderate volume.</li> <li>Variation of the Maximum Gain is less than ±0.12dB in Z direction within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within the frequency band 882-954MHz at the fixed Phi angle.</li> <li>It provides very low reflection of the transmitter signal into receiver. The return loss is more than 23dB.</li> <li>Light – weight is 3480g or 123oz.</li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field within narrow cone, which guaranties the stability of tag interrogation at any position in required direction.</li> <li>High realized gain with linear polarization and low VSWR increase the interrogation range for semi-passive RFID tags at reduced transmitter power.</li> <li>Size, weight and gain of the antenna are optimized for stationary applications.</li> <li>It may be employed for indoor and outdoor installations with IP66 rating.</li> </ul> <ul></ul> </td> </tr> </tbody> </table> <!-- P--> <p>{jd_file onlinelayout==Simple} {jd_file file==455} {jd_file file==449}</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=373:ant-915-la2x2&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/products/AMNew/ANT-915CA-2x2.jpg" alt="ANT_915_LA2x2" style="border: 0;" border="0" width="224" height="166" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +12.4dBi<br /></span></li> <li><span style="font-size: 10pt;">Horizontal Linear Polarized<br /></span></li> <li><span style="font-size: 10pt;">VSWR less than 1.15</span></li> <li><span style="font-size: 10pt;">Size 18.7"x18.7"x2.1" (475mmX475mmX52mm)</span></li> <li><span style="font-size: 10pt;">RF connector Reverse Polarity TNC<br /></span></li> </ul> </td> </tr> </tbody> </table> <table style="height: 326px; width: 592px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_915_LA_2x2_Gain_E-theta.jpg" alt="ANT_915_LA_2x2_Gain_E-theta" style="border: 0;" border="0" width="317" height="316" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"> <p><span style="font-size: x-small;"> </span>AWID's ANT-915LA2x2 is optimized for frequency band 902-928MHz.</p> <p>Optimization results are high realized gain, very low axial ratio of radiation and high return loss over operational frequency band.</p> <p style="padding-left: 30px;"><img src="http://www.awid.com/images/products/AMNew/ANT_915_LA_2x2_E-theta-3D.jpg" alt="ANT_915_LA_2x2_E-theta-3D" style="border: 0;" border="0" width="227" height="211" /></p> <ul></ul> </td> </tr> </tbody> </table> <table style="height: 259px; width: 589px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within moderate volume.</li> <li>Variation of the Maximum Gain is less than ±0.12dB in Z direction within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within the frequency band 882-954MHz at the fixed Phi angle.</li> <li>It provides very low reflection of the transmitter signal into receiver. The return loss is more than 23dB.</li> <li>Light – weight is 3480g or 123oz.</li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field within narrow cone, which guaranties the stability of tag interrogation at any position in required direction.</li> <li>High realized gain with linear polarization and low VSWR increase the interrogation range for semi-passive RFID tags at reduced transmitter power.</li> <li>Size, weight and gain of the antenna are optimized for stationary applications.</li> <li>It may be employed for indoor and outdoor installations with IP66 rating.</li> </ul> <ul></ul> </td> </tr> </tbody> </table> <!-- P--> <p>{jd_file onlinelayout==Simple} {jd_file file==455} {jd_file file==449}</p> ANT-915CP-0.5 2012-04-01T18:52:29Z 2012-04-01T18:52:29Z http://www.awid.com/index.php?option=com_content&view=article&id=370:ant-915-cp-05&catid=941:antennas-&Itemid=82 Administrator wmaster@awid.com <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=370:ant-915-cp-05&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/products/AMNew/ant-915-cp-0-5-90-2.jpg" alt="ANT_915_CP_05" style="border: 0;" border="0" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +1.1dBi<br /></span></li> <li><span style="font-size: 10pt;">Right Hand Circular Polarized (RHCP)</span></li> <li><span style="font-size: 10pt;">Axial Ratio 0.9dB<br /></span></li> <li><span style="font-size: 10pt;">VSWR less than 1.30</span></li> <li><span style="font-size: 10pt;">Size 2.80"x2.38"x0.60" (71.1mmX60.5mmX15.2mm)</span></li> <li><span style="font-size: 10pt;">RF connector Right Angle Plug MMCX<br /></span></li> </ul> </td> </tr> </tbody> </table> <p>&nbsp;</p> <p>&nbsp;</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_915_CP_05_Gain_E-theta.jpg" alt="MPR-AntennaPattern2" style="border: 0;" border="0" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"> <p><span style="font-size: x-small;"> </span>AWID's ANT-915CP-0.5 is optimized for frequency band 902-928MHz. <br />Optimization results are positive realized gain, low axial ratio of radiation and high return loss over operational frequency band achieved within small volume with linear size less than 1/4 of wavelength.</p> <p style="padding-left: 30px;"><img src="http://www.awid.com/images/products/AMNew/ANT_915_CP_05_E-theta-3D.jpg" alt="ANT_915_CP_05_E-theta-3D" border="0" width="221" height="189" /></p> <ul></ul> </td> </tr> </tbody> </table> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within small volume.</li> <li>Variation of the Maximum Gain is less than ±1.4dB in Z direction at any Phi angle within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within frequency band 908-920MHz at the fixed Phi angle.</li> <li>It provides low reflection of the transmitter signal into receiver. The return loss is more than 18dB.</li> <li>Extremely light – weight is 20g or 0.7oz.</li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field, which guaranties the stability of tag interrogation at any position.</li> <li>Size, weight and gain of the antenna are optimized for handheld applications.</li> <li>Antenna may be adopted for installation into various plastic enclosures with minor correction of the tuning components.</li> </ul> </td> </tr> </tbody> </table> <!-- P--> <p>{jd_file onlinelayout==Simple} {jd_file file==574}{jd_file file==459}</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=370:ant-915-cp-05&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/products/AMNew/ant-915-cp-0-5-90-2.jpg" alt="ANT_915_CP_05" style="border: 0;" border="0" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +1.1dBi<br /></span></li> <li><span style="font-size: 10pt;">Right Hand Circular Polarized (RHCP)</span></li> <li><span style="font-size: 10pt;">Axial Ratio 0.9dB<br /></span></li> <li><span style="font-size: 10pt;">VSWR less than 1.30</span></li> <li><span style="font-size: 10pt;">Size 2.80"x2.38"x0.60" (71.1mmX60.5mmX15.2mm)</span></li> <li><span style="font-size: 10pt;">RF connector Right Angle Plug MMCX<br /></span></li> </ul> </td> </tr> </tbody> </table> <p>&nbsp;</p> <p>&nbsp;</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_915_CP_05_Gain_E-theta.jpg" alt="MPR-AntennaPattern2" style="border: 0;" border="0" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"> <p><span style="font-size: x-small;"> </span>AWID's ANT-915CP-0.5 is optimized for frequency band 902-928MHz. <br />Optimization results are positive realized gain, low axial ratio of radiation and high return loss over operational frequency band achieved within small volume with linear size less than 1/4 of wavelength.</p> <p style="padding-left: 30px;"><img src="http://www.awid.com/images/products/AMNew/ANT_915_CP_05_E-theta-3D.jpg" alt="ANT_915_CP_05_E-theta-3D" border="0" width="221" height="189" /></p> <ul></ul> </td> </tr> </tbody> </table> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within small volume.</li> <li>Variation of the Maximum Gain is less than ±1.4dB in Z direction at any Phi angle within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within frequency band 908-920MHz at the fixed Phi angle.</li> <li>It provides low reflection of the transmitter signal into receiver. The return loss is more than 18dB.</li> <li>Extremely light – weight is 20g or 0.7oz.</li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field, which guaranties the stability of tag interrogation at any position.</li> <li>Size, weight and gain of the antenna are optimized for handheld applications.</li> <li>Antenna may be adopted for installation into various plastic enclosures with minor correction of the tuning components.</li> </ul> </td> </tr> </tbody> </table> <!-- P--> <p>{jd_file onlinelayout==Simple} {jd_file file==574}{jd_file file==459}</p> ANT-867CP-0.5 2012-04-01T18:52:29Z 2012-04-01T18:52:29Z http://www.awid.com/index.php?option=com_content&view=article&id=371:ant-867-cp-05&catid=941:antennas-&Itemid=82 Administrator wmaster@awid.com <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=371:ant-867-cp-05&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/products/AMNew/ant-915-cp-0-5-90-2.jpg" alt="ANT_915_CP_05" style="border: 0;" border="0" width="224" height="168" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 863-869MHz (EU)<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +0.91dBi<br /></span></li> <li><span style="font-size: 10pt;">Right Hand Circular Polarized (RHCP)</span></li> <li><span style="font-size: 10pt;">Axial Ratio 0.5dB<br /></span></li> <li><span style="font-size: 10pt;">VSWR less than 1.30</span></li> <li><span style="font-size: 10pt;">Size 2.80"x2.38"x0.60" (71.1mmX60.5mmX15.2mm)</span></li> <li><span style="font-size: 10pt;">RF connector Right Angle Plug MMCX<br /></span></li> </ul> </td> </tr> </tbody> </table> <p>&nbsp;</p> <p>&nbsp;</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_867_CP_05_Gain_E-theta.jpg" alt="MPR-AntennaPattern2" style="border: 0;" border="0" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"> <p><span style="font-size: x-small;"> </span>AWID's ANT-867CP-0.5 is optimized for (EU) frequency band 863-869MHz. Optimization results are positive realized gain, low axial ratio of radiation and high return loss over operational frequency band achieved within small volume with linear size less than 1/4 of wavelength.</p> <p><img src="http://www.awid.com/images/products/AMNew/ANT_867_CP_05_E-theta-3D.jpg" border="0" /></p> <span style="font-size: 10.5pt; font-family: Arial;"> </span> <p></p> <ul></ul> </td> </tr> </tbody> </table> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within small volume.</li> <li>Variation of the Maximum Gain is less than ±0.27dB in Z direction at any Phi angle within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within frequency band 859-876MHz at the fixed Phi angle.</li> <li>It provides low reflection of the transmitter signal into receiver. The return loss is more than 18dB.</li> <li>Extremely light – weight is 20g or 0.7oz.</li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field, which guaranties the stability of tag interrogation at any position.</li> <li>Size, weight and gain of the antenna are optimized for handheld applications.</li> <li>Antenna may be adopted for installation into various plastic enclosures with minor correction of the tuning components.</li> </ul> </td> </tr> </tbody> </table> <!-- P--> <p>{jd_file onlinelayout==Simple} {jd_file file==460} {jd_file file==461}</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=371:ant-867-cp-05&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/products/AMNew/ant-915-cp-0-5-90-2.jpg" alt="ANT_915_CP_05" style="border: 0;" border="0" width="224" height="168" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 863-869MHz (EU)<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +0.91dBi<br /></span></li> <li><span style="font-size: 10pt;">Right Hand Circular Polarized (RHCP)</span></li> <li><span style="font-size: 10pt;">Axial Ratio 0.5dB<br /></span></li> <li><span style="font-size: 10pt;">VSWR less than 1.30</span></li> <li><span style="font-size: 10pt;">Size 2.80"x2.38"x0.60" (71.1mmX60.5mmX15.2mm)</span></li> <li><span style="font-size: 10pt;">RF connector Right Angle Plug MMCX<br /></span></li> </ul> </td> </tr> </tbody> </table> <p>&nbsp;</p> <p>&nbsp;</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_867_CP_05_Gain_E-theta.jpg" alt="MPR-AntennaPattern2" style="border: 0;" border="0" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"> <p><span style="font-size: x-small;"> </span>AWID's ANT-867CP-0.5 is optimized for (EU) frequency band 863-869MHz. Optimization results are positive realized gain, low axial ratio of radiation and high return loss over operational frequency band achieved within small volume with linear size less than 1/4 of wavelength.</p> <p><img src="http://www.awid.com/images/products/AMNew/ANT_867_CP_05_E-theta-3D.jpg" border="0" /></p> <span style="font-size: 10.5pt; font-family: Arial;"> </span> <p></p> <ul></ul> </td> </tr> </tbody> </table> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within small volume.</li> <li>Variation of the Maximum Gain is less than ±0.27dB in Z direction at any Phi angle within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within frequency band 859-876MHz at the fixed Phi angle.</li> <li>It provides low reflection of the transmitter signal into receiver. The return loss is more than 18dB.</li> <li>Extremely light – weight is 20g or 0.7oz.</li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field, which guaranties the stability of tag interrogation at any position.</li> <li>Size, weight and gain of the antenna are optimized for handheld applications.</li> <li>Antenna may be adopted for installation into various plastic enclosures with minor correction of the tuning components.</li> </ul> </td> </tr> </tbody> </table> <!-- P--> <p>{jd_file onlinelayout==Simple} {jd_file file==460} {jd_file file==461}</p> ANT-915CPS 2012-03-29T00:00:00Z 2012-03-29T00:00:00Z http://www.awid.com/index.php?option=com_content&view=article&id=365:ant-915-cps&catid=941:antennas-&Itemid=82 Administrator wmaster@awid.com <p><br />::jseblod::article::/jseblod::<br />::panel_article:: ::/panel_article::<br />::wysiwyg_introtext::</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=365:ant-915-cps&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/stories/products/ANT-915-CPS.jpg" style="border: 0;" border="0" width="224" height="166" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +5.8dBi</span></li> <li><span style="font-size: 10pt;">Right Hand Circular Polarized (RHCP)</span></li> <li><span style="font-size: 10pt;">Axial Ratio 1.5dB</span></li> <li><span style="font-size: 10pt;">VSWR less than 1.12</span></li> <li><span style="font-size: 10pt;">Size 10.25”x10.25”x1.42” (260mmX260mmX36mm)</span></li> <li><span style="font-size: 10pt;">RF connector Reverse Polarity TNC<br /></span></li> </ul> </td> </tr> </tbody> </table> <p>::/wysiwyg_introtext::<br />::my_readmore::</p> <p>::/my_readmore::<br />::wysiwyg_fulltext::</p> <table style="height: 332px; width: 693px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_915_CPS_Gain_E-theta.jpg" alt="ANT_915_CPS_Gain_E-theta" style="border: 0;" border="0" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"> <p><span style="font-size: x-small;"> </span>AWID's ANT-915CPS is optimized for USA frequency band 902-928MHz. However, it may be employed for European 865-869MHz and Japanese 950-955MHz frequency bands with some degradation of the gain and VSWR.</p> <p style="padding-left: 30px;"><span style="font-size: x-small;"> </span> <img src="http://www.awid.com/images/products/AMNew/ANT_915_CPS_E-theta-3D.jpg" border="0" width="238" height="203" /></p> </td> </tr> </tbody> </table> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within moderate volume.</li> <li>Variation of the Maximum Gain is less than ±0.8dB in Z direction at any Phi angle within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within the frequency band 876-973MHz at the fixed Phi angle.</li> <li>It provides very low reflection of the transmitter signal into receiver. The return loss is more than 24dB.</li> <li>Light – weight is 482g or 17oz.</li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field, which guaranties the stability of tag interrogation at any position.</li> <li>Size, weight and gain of the antenna are optimized for stationary applications.</li> <li>It may be employed for indoor installations.</li> </ul> </td> </tr> </tbody> </table> <p></p> <p>{jd_file onlinelayout==Simple}{jd_file file==445}{jd_file file==450}</p> <p>::/wysiwyg_fulltext::<br />::panel_article_details:: ::/panel_article_details::<br />::panel_article_params:: ::/panel_article_params::<br />::panel_article_meta:: ::/panel_article_meta::<br />::panel_end:: ::/panel_end::<br />::jseblodend::::/jseblodend::</p> <p><br />::jseblod::article::/jseblod::<br />::panel_article:: ::/panel_article::<br />::wysiwyg_introtext::</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=365:ant-915-cps&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/stories/products/ANT-915-CPS.jpg" style="border: 0;" border="0" width="224" height="166" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +5.8dBi</span></li> <li><span style="font-size: 10pt;">Right Hand Circular Polarized (RHCP)</span></li> <li><span style="font-size: 10pt;">Axial Ratio 1.5dB</span></li> <li><span style="font-size: 10pt;">VSWR less than 1.12</span></li> <li><span style="font-size: 10pt;">Size 10.25”x10.25”x1.42” (260mmX260mmX36mm)</span></li> <li><span style="font-size: 10pt;">RF connector Reverse Polarity TNC<br /></span></li> </ul> </td> </tr> </tbody> </table> <p>::/wysiwyg_introtext::<br />::my_readmore::</p> <p>::/my_readmore::<br />::wysiwyg_fulltext::</p> <table style="height: 332px; width: 693px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_915_CPS_Gain_E-theta.jpg" alt="ANT_915_CPS_Gain_E-theta" style="border: 0;" border="0" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"> <p><span style="font-size: x-small;"> </span>AWID's ANT-915CPS is optimized for USA frequency band 902-928MHz. However, it may be employed for European 865-869MHz and Japanese 950-955MHz frequency bands with some degradation of the gain and VSWR.</p> <p style="padding-left: 30px;"><span style="font-size: x-small;"> </span> <img src="http://www.awid.com/images/products/AMNew/ANT_915_CPS_E-theta-3D.jpg" border="0" width="238" height="203" /></p> </td> </tr> </tbody> </table> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within moderate volume.</li> <li>Variation of the Maximum Gain is less than ±0.8dB in Z direction at any Phi angle within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within the frequency band 876-973MHz at the fixed Phi angle.</li> <li>It provides very low reflection of the transmitter signal into receiver. The return loss is more than 24dB.</li> <li>Light – weight is 482g or 17oz.</li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field, which guaranties the stability of tag interrogation at any position.</li> <li>Size, weight and gain of the antenna are optimized for stationary applications.</li> <li>It may be employed for indoor installations.</li> </ul> </td> </tr> </tbody> </table> <p></p> <p>{jd_file onlinelayout==Simple}{jd_file file==445}{jd_file file==450}</p> <p>::/wysiwyg_fulltext::<br />::panel_article_details:: ::/panel_article_details::<br />::panel_article_params:: ::/panel_article_params::<br />::panel_article_meta:: ::/panel_article_meta::<br />::panel_end:: ::/panel_end::<br />::jseblodend::::/jseblodend::</p> ANT-915CPD 2012-03-29T00:00:00Z 2012-03-29T00:00:00Z http://www.awid.com/index.php?option=com_content&view=article&id=366:ant-915-cpd&catid=941:antennas-&Itemid=82 Administrator wmaster@awid.com <p>::jseblod::article::/jseblod::<br />::panel_article:: ::/panel_article::<br />::wysiwyg_introtext::</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=366:ant-915-cpd&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/stories/products/ANT-915-CPD.jpg" style="border: 0;" border="0" width="224" height="166" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +5.8dBi<br /></span></li> <li><span style="font-size: 10pt;">Right Hand Circular Polarized (RHCP)</span></li> <li><span style="font-size: 10pt;">Axial Ratio 1.8dB</span></li> <li><span style="font-size: 10pt;">Ports Isolation 29dB</span></li> <li><span style="font-size: 10pt;">VSWR less than 1.15</span></li> <li><span style="font-size: 10pt;">Size 20.25”x10.25”x1.42” (514mmX260mmX36mm)</span></li> <li><span style="font-size: 10pt;">RF connector - 2 Reverse Polarity TNC<br /></span></li> </ul> </td> </tr> </tbody> </table> <p>::/wysiwyg_introtext::<br />::my_readmore::</p> <p>::/my_readmore::</p> <p>::wysiwyg_fulltext::</p> <table style="height: 313px; width: 593px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_915_CPD_Gain_E-theta.jpg" alt="MPR-1510 Dual Port" style="border: 0;" border="0" width="307" height="306" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"> <p><span style="font-size: x-small;"> </span>AWID's ANT-915CPD is optimized for frequency band 902 - 928MHz in a Bi-static architecture. However, it may be employed in a mono-static architecture with multiple RF ports to improve interrogation in multipath fading condition.</p> <p style="padding-left: 30px;"><img src="http://www.awid.com/images/products/AMNew/ANT_915_CPD_E-theta-3D.jpg" border="0" width="238" height="203" /></p> </td> </tr> </tbody> </table> <table style="height: 228px; width: 588px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within moderate volume.</li> <li>Variation of the Maximum Gain is less than ±0.88dB in Z direction at any Phi angle within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within the frequency band 876 - 973MHz at the fixed Phi angle.</li> <li>Very low coupling of the transmitter signal into receiver. The isolation is more than 29dB.</li> <li>Moderately light weight - 943g or 33.3oz.</li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The ANT-915CPD antenna is intended for applications with RFID interrogator architecture with separate transmitter and receiver RF ports to provide better interrogation rate and range.</li> <li>It provides uniform electromagnetic field, which guaranties the stability of tag interrogation at any position.</li> <li>Size, weight and gain of this antenna are optimized for stationary applications.</li> <li>It may be employed for indoor installations.</li> </ul> </td> </tr> </tbody> </table> <!-- P--> <p>{jd_file onlinelayout==Simple} {jd_file file==265}{jd_file onlinelayout==Simple}{jd_file file==447}</p> <p>::/wysiwyg_fulltext::<br />::panel_article_details:: ::/panel_article_details::<br />::panel_article_params:: ::/panel_article_params::<br />::panel_article_meta:: ::/panel_article_meta::<br />::panel_end:: ::/panel_end::<br />::jseblodend::::/jseblodend::</p> <p>::jseblod::article::/jseblod::<br />::panel_article:: ::/panel_article::<br />::wysiwyg_introtext::</p> <table style="width: 100%;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=366:ant-915-cpd&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/stories/products/ANT-915-CPD.jpg" style="border: 0;" border="0" width="224" height="166" /></a></td> <td align="left" valign="top"> <ul> <li><span style="font-size: 10pt;">Operational Frequency 902-928MHz<br /></span></li> <li><span style="font-size: 10pt;">Maximum Gain +5.8dBi<br /></span></li> <li><span style="font-size: 10pt;">Right Hand Circular Polarized (RHCP)</span></li> <li><span style="font-size: 10pt;">Axial Ratio 1.8dB</span></li> <li><span style="font-size: 10pt;">Ports Isolation 29dB</span></li> <li><span style="font-size: 10pt;">VSWR less than 1.15</span></li> <li><span style="font-size: 10pt;">Size 20.25”x10.25”x1.42” (514mmX260mmX36mm)</span></li> <li><span style="font-size: 10pt;">RF connector - 2 Reverse Polarity TNC<br /></span></li> </ul> </td> </tr> </tbody> </table> <p>::/wysiwyg_introtext::<br />::my_readmore::</p> <p>::/my_readmore::</p> <p>::wysiwyg_fulltext::</p> <table style="height: 313px; width: 593px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_915_CPD_Gain_E-theta.jpg" alt="MPR-1510 Dual Port" style="border: 0;" border="0" width="307" height="306" /></p> <p>&nbsp;</p> </td> <td align="left" valign="top"> <p><span style="font-size: x-small;"> </span>AWID's ANT-915CPD is optimized for frequency band 902 - 928MHz in a Bi-static architecture. However, it may be employed in a mono-static architecture with multiple RF ports to improve interrogation in multipath fading condition.</p> <p style="padding-left: 30px;"><img src="http://www.awid.com/images/products/AMNew/ANT_915_CPD_E-theta-3D.jpg" border="0" width="238" height="203" /></p> </td> </tr> </tbody> </table> <table style="height: 228px; width: 588px;" cellpadding="3" cellspacing="0" align="center" border="0"> <tbody> <tr> <td align="left" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within moderate volume.</li> <li>Variation of the Maximum Gain is less than ±0.88dB in Z direction at any Phi angle within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within the frequency band 876 - 973MHz at the fixed Phi angle.</li> <li>Very low coupling of the transmitter signal into receiver. The isolation is more than 29dB.</li> <li>Moderately light weight - 943g or 33.3oz.</li> </ul> </td> <td align="left" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The ANT-915CPD antenna is intended for applications with RFID interrogator architecture with separate transmitter and receiver RF ports to provide better interrogation rate and range.</li> <li>It provides uniform electromagnetic field, which guaranties the stability of tag interrogation at any position.</li> <li>Size, weight and gain of this antenna are optimized for stationary applications.</li> <li>It may be employed for indoor installations.</li> </ul> </td> </tr> </tbody> </table> <!-- P--> <p>{jd_file onlinelayout==Simple} {jd_file file==265}{jd_file onlinelayout==Simple}{jd_file file==447}</p> <p>::/wysiwyg_fulltext::<br />::panel_article_details:: ::/panel_article_details::<br />::panel_article_params:: ::/panel_article_params::<br />::panel_article_meta:: ::/panel_article_meta::<br />::panel_end:: ::/panel_end::<br />::jseblodend::::/jseblodend::</p> ANT-2012 2012-03-28T00:00:00Z 2012-03-28T00:00:00Z http://www.awid.com/index.php?option=com_content&view=article&id=364:ant-2012&catid=941:antennas-&Itemid=82 Administrator wmaster@awid.com <p>::jseblod::article::/jseblod::<br />::panel_article:: ::/panel_article::<br />::wysiwyg_introtext::</p> <table style="width: 100%; text-align: center;" border="0" cellpadding="3" cellspacing="0"> <tbody> <tr> <td style="text-align: left;" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=364:ant-2012&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/stories/products/ANT-2012.jpg" alt="ANT-2012" style="border: 0;" border="0" height="166" width="224" /></a></td> <td style="text-align: left;" valign="top"> <ul> <li>Operational Frequency 902-928MHz</li> <li>Maximum Gain +5.4dBi</li> <li>Right Hand Circular Polarized (RHCP)</li> <li>Axial Ratio 0.50dB</li> <li>VSWR less than 1.15</li> <li>Size 8.5"x8.4"x1.28" (216mmX213mmX33mm)</li> <li>RF Connector Reverse Polarity SMA</li> </ul> </td> </tr> </tbody> </table> <p>::/wysiwyg_introtext::<br />::my_readmore::</p> <p>::/my_readmore::<br />::wysiwyg_fulltext::</p> <table style="text-align: center; height: 332px; width: 682px;" border="0" cellpadding="3" cellspacing="0"> <tbody style="text-align: left;"> <tr style="text-align: left;"> <td style="text-align: left;" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_2012_Gain_E-theta.jpg" alt="ANT_2012_Gain_E-theta" style="border: 0;" border="0" /></p> <p>&nbsp;</p> </td> <td style="text-align: left;" valign="top"> <p>AWID’s ANT-2012 is optimized for frequency band 902-928MHz.</p> <p>Optimization results are very low axial ratio of radiation and high return loss over operational frequency band.</p> <blockquote><img src="http://www.awid.com/images/products/AMNew/ANT_2012_E-theta-3D.jpg" border="0" /></blockquote> </td> </tr> </tbody> </table> <ul> <li>This antenna is shipped with a LR-911 HiLo or LR-2000 HiLo configuration.</li> <li>It can also be used with the following products: <a href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=327:mpr-2010-br&amp;catid=936:readers&amp;Itemid=286">MPR-2010BR,</a> <a href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=326:mpr-2010-bn&amp;catid=936:readers&amp;Itemid=286">MPR-2010BN,</a> <a href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=329:mpr-2080-bu&amp;catid=936:readers&amp;Itemid=286">MPR-2010BU</a></li> </ul> <table style="width: 100%; text-align: center;" border="0" cellpadding="3" cellspacing="0"> <tbody style="text-align: left;"> <tr style="text-align: left;"> <td style="text-align: left;" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within moderate volume.</li> <li>Variation of the Maximum Gain is less than ±0.32dB in Z direction at any Phi angle within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within the frequency band 888-950MHz at the fixed Phi angle.</li> <li>It provides very low reflection of the transmitter signal into receiver. The return loss is more than 23dB.</li> <li>Light – weight is 790g or 28oz.</li> </ul> </td> <td style="text-align: left;" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field, which guaranties the stability of tag interrogation at any position.</li> <li>Size, weight and gain of the antenna are optimized for stationary and mobile applications.</li> <li>It may be employed for indoor and outdoor installations with additional enclosure for protection against rain and snow.</li> </ul> </td> </tr> </tbody> </table> <p></p> <h1 class="CM2" style="text-align: justify;"></h1> <!-- P--> <p>{jd_file onlinelayout==Simple}{jd_file file==452}{jd_file file==451}</p> <p>&nbsp;</p> <p>::/wysiwyg_fulltext::<br />::panel_article_details:: ::/panel_article_details::<br />::panel_article_params:: ::/panel_article_params::<br />::panel_article_meta:: ::/panel_article_meta::<br />::panel_end:: ::/panel_end::<br />::jseblodend::::/jseblodend::</p> <p>::jseblod::article::/jseblod::<br />::panel_article:: ::/panel_article::<br />::wysiwyg_introtext::</p> <table style="width: 100%; text-align: center;" border="0" cellpadding="3" cellspacing="0"> <tbody> <tr> <td style="text-align: left;" valign="top" width="150"><a target="_self" href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=364:ant-2012&amp;catid=941:antennas-&amp;Itemid=82"><img src="http://www.awid.com/images/stories/products/ANT-2012.jpg" alt="ANT-2012" style="border: 0;" border="0" height="166" width="224" /></a></td> <td style="text-align: left;" valign="top"> <ul> <li>Operational Frequency 902-928MHz</li> <li>Maximum Gain +5.4dBi</li> <li>Right Hand Circular Polarized (RHCP)</li> <li>Axial Ratio 0.50dB</li> <li>VSWR less than 1.15</li> <li>Size 8.5"x8.4"x1.28" (216mmX213mmX33mm)</li> <li>RF Connector Reverse Polarity SMA</li> </ul> </td> </tr> </tbody> </table> <p>::/wysiwyg_introtext::<br />::my_readmore::</p> <p>::/my_readmore::<br />::wysiwyg_fulltext::</p> <table style="text-align: center; height: 332px; width: 682px;" border="0" cellpadding="3" cellspacing="0"> <tbody style="text-align: left;"> <tr style="text-align: left;"> <td style="text-align: left;" valign="top" width="202"> <p><img src="http://www.awid.com/images/products/AMNew/ANT_2012_Gain_E-theta.jpg" alt="ANT_2012_Gain_E-theta" style="border: 0;" border="0" /></p> <p>&nbsp;</p> </td> <td style="text-align: left;" valign="top"> <p>AWID’s ANT-2012 is optimized for frequency band 902-928MHz.</p> <p>Optimization results are very low axial ratio of radiation and high return loss over operational frequency band.</p> <blockquote><img src="http://www.awid.com/images/products/AMNew/ANT_2012_E-theta-3D.jpg" border="0" /></blockquote> </td> </tr> </tbody> </table> <ul> <li>This antenna is shipped with a LR-911 HiLo or LR-2000 HiLo configuration.</li> <li>It can also be used with the following products: <a href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=327:mpr-2010-br&amp;catid=936:readers&amp;Itemid=286">MPR-2010BR,</a> <a href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=326:mpr-2010-bn&amp;catid=936:readers&amp;Itemid=286">MPR-2010BN,</a> <a href="http://www.awid.com/index.php?option=com_content&amp;view=article&amp;id=329:mpr-2080-bu&amp;catid=936:readers&amp;Itemid=286">MPR-2010BU</a></li> </ul> <table style="width: 100%; text-align: center;" border="0" cellpadding="3" cellspacing="0"> <tbody style="text-align: left;"> <tr style="text-align: left;"> <td style="text-align: left;" bgcolor="#b1c0c9" valign="top" width="50%"> <p><span style="color: #0000ff; font-size: large;"><strong>Features</strong></span></p> <ul> <li>Maximum achieved realized gain and frequency bandwidth within moderate volume.</li> <li>Variation of the Maximum Gain is less than ±0.32dB in Z direction at any Phi angle within operational frequency band.</li> <li>Variation of the Maximum Gain is less than ±0.5dB within the frequency band 888-950MHz at the fixed Phi angle.</li> <li>It provides very low reflection of the transmitter signal into receiver. The return loss is more than 23dB.</li> <li>Light – weight is 790g or 28oz.</li> </ul> </td> <td style="text-align: left;" bgcolor="#eae9ea" valign="top"> <p><span style="color: #0000ff; font-size: large;"><strong>Benefits</strong></span></p> <ul> <li>The antenna is intended for application with RFID mono-static interrogator architecture and it provides better interrogation rate and range because of very low VSWR.</li> <li>Antenna provides uniform electromagnetic field, which guaranties the stability of tag interrogation at any position.</li> <li>Size, weight and gain of the antenna are optimized for stationary and mobile applications.</li> <li>It may be employed for indoor and outdoor installations with additional enclosure for protection against rain and snow.</li> </ul> </td> </tr> </tbody> </table> <p></p> <h1 class="CM2" style="text-align: justify;"></h1> <!-- P--> <p>{jd_file onlinelayout==Simple}{jd_file file==452}{jd_file file==451}</p> <p>&nbsp;</p> <p>::/wysiwyg_fulltext::<br />::panel_article_details:: ::/panel_article_details::<br />::panel_article_params:: ::/panel_article_params::<br />::panel_article_meta:: ::/panel_article_meta::<br />::panel_end:: ::/panel_end::<br />::jseblodend::::/jseblodend::</p>